Protective role of methylene blue in Alzheimer's disease via mitochondria and cytochrome c oxidase.

نویسندگان

  • Hani Atamna
  • Raj Kumar
چکیده

The key cytopathologies in the brains of Alzheimer's disease (AD) patients include mitochondrial dysfunction and energy hypometabolism, which are likely caused by the accumulation of toxic species of amyloid-beta (Abeta) peptides. This review discusses two potential approaches to delay the onset of AD. The first approach is use of diaminophenothiazines (e.g., methylene blue; MB) to prevent mitochondrial dysfunction and to attenuate energy hypometabolism. We have shown that MB increases heme synthesis, cytochrome c oxidase (complex IV), and mitochondrial respiration, which are impaired in AD brains. Consistently, MB is one of the most effective agents to delay senescence in normal human cells. A key action of MB appears to be enhancing mitochondrial function, which is achieved at nM concentrations. We propose that the cycling of MB between the reduced leucomethylene blue (MBH2) and the oxidized (MB) forms may explain, in part, the mitochondria-protecting activities of MB. The second approach is use of naturally occurring osmolytes to prevent the formation of toxic forms of Abeta. Osmolytes (e.g., taurine, carnosine) are brain metabolites typically accumulated in tissues at relatively high concentrations following stress conditions. Osmolytes enhance thermodynamic stability of proteins by stabilizing natively-folded protein conformation, thus preventing aggregation, without perturbing other cellular processes. Experimental evidence suggests that the level of carnosine is significantly lower in AD patients. Osmolytes may inhibit the formation of Abeta species in vivo, thus preventing the formation of soluble oligomers. Osmolytes are efficient antioxidants that may also increase neural resistance to Abeta. The potential significance of combining MB and osmolytes to treat AD are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways.

Methylene blue (MB) has been used clinically for about a century to treat numerous ailments. We show that MB and other diaminophenothiazines extend the life span of human IMR90 fibroblasts in tissue culture by >20 population doubling (PDLs). MB delays senescence at nM levels in IMR90 by enhancing mitochondrial function. MB increases mitochondrial complex IV by 30%, enhances cellular oxygen cons...

متن کامل

Methylene Blue as a Cerebral Metabolic and Hemodynamic Enhancer

By restoring mitochondrial function, methylene blue (MB) is an effective neuroprotectant in many neurological disorders (e.g., Parkinson's and Alzheimer's diseases). MB has also been proposed as a brain metabolic enhancer because of its action on mitochondrial cytochrome c oxidase. We used in vitro and in vivo approaches to determine how MB affects brain metabolism and hemodynamics. For in vitr...

متن کامل

Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release

Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...

متن کامل

Geniposide Protects Primary Cortical Neurons against Oligomeric Aβ1-42-Induced Neurotoxicity through a Mitochondrial Pathway

Mitochondrial dysfunction plays a key role in the progression of Alzheimer's disease (AD). The accumulation of amyloid-beta peptide (Aβ) in the brains of AD patients is thought to be closely related to neuronal mitochondrial dysfunction and oxidative stress. Therefore, protecting mitochondria from Aβ-induced neurotoxicity is an effective strategy for AD therapeutics. In a previous study, we fou...

متن کامل

Toxicity of Manganese Titanate on Rat Vital Organ Mitochondria

The TiO2, which is a main material in the field of photocatalytic reactions, includes rutile and anatase phase. Titanium dioxide has possessed notice due to its promising applications in the environmental photocatalytic degradation of pollutants of organic compound in waste water and utilization of solar energy. The nanosized manganese titanate (pyrophanite) MnTiO3 was collected by oxidation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Alzheimer's disease : JAD

دوره 20 Suppl 2  شماره 

صفحات  -

تاریخ انتشار 2010